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An adaptive variational method is presented here and is applied to the study of the 
stress-strain state of a thin elastic shell. The method makes use of the maximum principle 
for inclusions [i, 2] and is characterized by the fact that the coordinate system is cal- 
culated on a computer. Meanwhile, in conformity with the notion advanced by G. I. Marchuk, 
the class of functions for which the above principle is realized, is assigned with allowance 
for a priori known properties of the solutions of the boundary-value problem [3, 4]. A model 
is proposed for kinematic relations of the geometrically nonlinear theory of shells in a 
"quadratic" approximation. 

I. Formulation of the Problem. We will examine the system of Marguerre-Vlasov equations 
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describing the stress-strain state, stability, and postbranching behavior of a shallow 
spherical cap with a hinged contour. Here, w is the normal displacement of the middle surface; 

is an Airy function; p is a natural small parameter with higher derivatives; 0 is the half- 
angle of the shell; a is the bearing radius; R is the radius of curvature of the sphere; p is 
the external pressure; h is the thickness of the shell; v is the Poisson's ratio; all of the 
quantities are dimensionless. The procedure for changing over to the dimensional quantities 
is described in [5]. 

The problem being examined permits the use of a dual method of analysis whereby, to- 
gether with the Marguerre-Vlasov problem, we employ its below variational formulation [6] to 
approximate the solution of equations of shell theory 
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The formulations (i.i) and (1.2) are equivalent in a Hilbert space of two-dimensional 
vector-functions U(~). When the solution constructed in an attempt to develop approximate 
methods of analysis contains an approximation error, the accuracy of the methods can be 
improved by minimization of the function Z(U). 

In deriving equations of shell theory, we used static relations in the form of Hooke's 
law, the Kirchoff-Love hypothesis, and kinematic expressions 
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where A(a, $), B(~, $) are coefficients of the first quadratic form of the undeformed middle 
surface; ~ and B are curvilinear coordinates; u and v are the tangential displacements in 
the directions ~ and ~; k~ and k~ are the principal curvatures of the surface in question. 
Thus, within the framework of the shell-theory model in strain tensor components being 
studied here, we retain nonlinear terms only for the angles of rotation of the normal to the 
shell surface when it is rotated in two planes: a = const, $ = const. 

In 1939-1942, Friedrichs and Stoker discovered a new effect - a circular plate subjected 
to uniform compression at high pressures has a region in which tensile forces are present. 
This phenomenon was unexpected for such plates, but the investigations were able to substan- 
tiate their findings by the asymptotic method [7, 8]. A similar result was obtained in [9] 
in formulating a precise experiment concerning the stability of a spherical segment under a 
uniform external pressure p. 

The paradoxicality and importance of these phenomena are related to the fact that, as 
an example, the sphere in the case being studied here might become unstable in nonaxisymmetric 
modes. In the opinion of specialists, such bifurcation of the solution is due to the fact that 
appreciable compressive forces are developed in the region of large strains. This notion has 
been used as the basis for the current explanation of the existence of nonaxisymmetric loss 
of stability [i0]. 

The authors of [9] examined shells only at g > 1.07-10 -3 , since it is very difficult to 
study the stress-strain state in a precision experiment at smaller values of p. Here, we 
propose to analyze this problem by approximate methods, having expanded the range of variation 
of ~. However, several fundamental questions arise in approximating the solution [11-13] 
when these methods are employed. 

The method to be used is based on the notion [3, 4] that the efficiency of projection 
methods can be increased if the solution in the high-gradient region is approximated by two 
sequences {~Fi} and {~J'i}, one of which takes into account the singular properties of the solu- 
tion of the shell-theory equations. 

2. Method of Solution and Results of Computation. As the first sequence of test spaces 
{V,} ,  Vl  ~ u  ~ V..~, . . . ,  V , _ ~  V,~ we take Hilbert spaces satisfying the requirement of smooth- 
ness of the solution of the initial problem. However, generally speaking, the conditions 
for a~ need not be satisfied for the elements of these spaces. Here, n = dim V n. We specify 
the rule for selection of the basis functions {~i} n in V n for each fixed n. 

The first algorithm involves the construction of the n-th approximation (il n = (Wn, ~n)) 
in the form 

H 

i 1 

where the coefficients of the expansion c i are determined from Bubnov's nonlinear algebraic 
system 

/~(q, c2, c:~ . . . .  , c,~, p)  = O, i = I ,  21z. ( 2 . 2 )  

The explicit expressions for the function fi are not written out because the procedures for 
obtaining them are well known. 

Let $ be a parameter (-~ < ~ < 0). We introduce the variable ~ = p~ x (i - r). Proceed- 
ing as above, we specify another sequence of Hilbert spaces {l[i~}, I[~ :~ I12c= |[:. ..... |[I,_L~ |[h. 
First of all, these spaces belong to the prescribed class in the sense of the smoothness 
limitation. Secondly, they make it possible to compensate for the error in the boundary 
conditions and part of the bearing contour of the shell. We will designate the basis func- 
tions in | | k  through {~'j}~, where ~i=:= ~ J P j ,  :~J is the polynomial form of T, pj = exp (-~j~), 

> Re%j > 5 > 0. It is assumed that the exponential multiplier pj for each term of the 
sequence of test spaces {[|k} is explicitly determined, although the numerical value of the 
parameters %j may be unknown. 

The second algorithm consists of the expansion l|kn = ~n + (Wkn, ~kn) in two systems of 
functions 

Z=/ J :~ 
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(dj are unknown coefficients). To determine them, we insert (2.3) into the shell-theory 
equations and boundary conditions after we express r in the coefficients and diffe~ntial 
operators through ~. We group all of the expressions which do not contain the elements ~j 
or their derivatives. We then drop all of the above-indicated terms, considering that 
series (2.1) satisfies the equations ofasphere with the necessary accuracy E on ~ - except 
perhaps for a small region in the neighborhood of the bearing contour - and that the ex- 
pressions obtained are stable against e-perturbations. After these simplifications, each 
of the remaining terms in the equation of the spherical shell will be exponentially small 
at large ~. Having projected the thus-transformed expressions onto elements of the sequence 
{~}~, we find Bubnov's second nonlinear algebraic system 

~i(el, C~, C:~ . . . . .  e . ,  d , ,  d~, (~ . . . . .  (2.4) 
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Such use of :  the second Bubnov process leads to an indeterminate algebraic system in the un- 
knowns dz, d2 ..... dk, since (2.4) contains 2k coefficients dj = (dJ, d~) and 2(k - o) 

equations. The additional 2a equations are derived from the boundary conditions. We join 
them to the Bubnov system and henceforthconsider (2.4) to represent the expanded algebraic 
problem. 

If the indices of the exponents XI, 42, ..., X k are known, then we construct an approxi- 
mate solution Hkn by successively solving (2.2) and (2.4) with the use of (2.3). However, 
the question of the numerical value of X l, X~, ..., X k remains open in nonlinear problems of 
shell theory, except for rare exceptions. 

Third Algorithm. To close the proposed method, we insert (2.3) into the expression for 
the energy functional. Then from the condition 

Z ~ i,,[ (2.5) 
)g 

we easily find the remaining k equations. In the minimization of the functional Z, these 
equations might be Ritz equations if there were no limitations on Xj. The last fact neces- 
sarily involves use of the maximum principle. To use this principle in the traditional form, 
it suffices to reduce algebraic problems (2.2), (2.4) to Cauchy problems with governing 
parameters XI, X2, ''', Xk from the region of permissible values, having differentiated 
(2.2) and (12.4) with respect to the pressure p. In this case, the following integral may 
be the quality functional 

P 

u 

while the initial conditions may be trivial values for c i, dj at p = 0. 

One of the shortcomings of the method has to do with the awkwardness of the derivation 
of the integrated equations. The preliminary analytical calculations necessary for realizing 
the projection method can be simplified if the resulting systems of differential equations 
are not solved for the derivatives (ci)' and (d~)' and if this procedure is instead accom- 

ap . . . . . .  
plished numerically on a computer. In ~his case, the quantltzes in questlon w111 contaln 
rounding errors. Then correct application of the maximum principle will depend on the corres- 
ponding theorem not for the differential equations but for the sequences [i, 2]. Also, it 
proves possible to use a computer in the preliminary calculations when constructing 
the scalar product, although here it is necessary for small ij to calculate terms exceeding 
the numbers allowed by the words used. Thus, in the programmed realization, the range for the 
governing parameters is narrowed, and they cannot take values less than about 0.! on a BESM-6 
computer. 

To continue the solution with respect to the parameter p ~ [0, p*], where p* is the 
branch point, we specify the directed sequence {pi} on the segment [0, p*]. The solution 
between anN' two terms is found by the Runge-Kutta method. It is refined at points pi by 
Newton's method. The location of these points is determined on the basis of the rate of 
convergence of the Newtonian iterations. 
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In the numerical integration of the equations of thin, geometrically nonlinear shells, 
it is interesting to examine the advance of possible small values of ~ into the region if use 

of the method of small parameters with higher derivatives cannot be substantiated. At present, 
it is usually at least necessary to modify the method of calculation [14] with a reduction 
in ~ by a factor of 2-4. 

Below we present results of numerical analysis of the stress-strain state at p = 2-10 -zg, 
J 

which is close to the natural limit - the roundoff of the BESM-6 computer. Our investigations 
was limited to the axisymmetric formulation 
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In the first Bubnov process, to approximate each of the unknowns f and m we assigned 
one power basis ([+r ~)X{r21:+1}$. In the projection of system (2.6) in 1,2(0, i), we used 

elements of the form {r2k+1}~. In the second Bubnov process, the analogous coordinate se- 

quences were equal to {~k}d exp(-IT) and {Ik}~, respectively, where ~ = (i - r)~ -1/2. 

The values of the first four coefficients c k for the stress function are as follows: 
0.132616; 0.120845; -0.079648; 0.024718 at k = 0, i, 2, and 3. Here and below, 0 = 0.15, 
p = p*, and n = 3. The characteristic features of expansion (2.3) are clear - a relatively 
slow decrease in the coefficients c k and alternation of signs with a change in k. This 
suggests that the accuracy of the results of the first Bubnov process is not high. 

Table 1 shows points r k over the meridian of the shell and values of f(r k) calculated 
in the approximation of the first Bubnov process. Also shown are results for the formal 
asymptotic solution at ~ + 0 in Eqs. (2.6). 

It is evident that, with such a decrease in Ck, the degenerate problem is determined 
with an error no greater than 0.6% when k increases. The error is as low as 0.15% at the 
point r = i. The high accuracy at the boundary point is very important to the efficiency of 
the method, since it involves matching the solutions of two Bubnov processes in which the 
error of the calculations of c k becomes the error of d k. 

Table 2 shows d k for the stress function and angle of rotation of the normal of the shell 
element. Five terms are kept in the last sum in expansion (2.3). It is evident that d k 
rapidly decreases with an increase in k. Thus, series (2.3) "converges internally" for 
both Bubnov processes. 

In the above calculations, the parameter I, characterizing the optimum weight of the 
test space 114, turned out to be equal to 0.41375. Its value was determined from the condi- 
tion of the potential energy minimum for the approximation in question. 

In the realization of the projection method in high approximations, problems (2.2) and 
(2.4) proved to be ill-conditioned in the sense that ill-conditioned linear algebraic equa- 
tions appeared in Newton's method. This was established from analysis of singular numbers of 
the corresponding matrices. Here, the rounding errors were taken into account by the method 
proposed in [15], while the program pack necessary to do this was made available by the 
author of [16]. 

Figures 1 and 2 show the forces in the middle surface of the shell. The following 
laws can be established: i) N~ and N r are nonmonotonic functions of the variable ~; 2) 
there is a point A at which a uniaxial stress state exists; 3) the boundary-layer region 
contains a circle T = {T < 6.41N.s ~ > 0} such that the sphere is tensioned in it; 4) although 
the point of localization of the maximum forces B is located near the boundary 3~, it is not 
part of the boundary. 

On the whole, the relation N,L >> N r is valid for the stress state in the edge-effect 
region. Thus, the force N c determines the strain of the spherical shell in this region at 
small D. 
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The above-described method was used to find the critical pressure p* = 0.4454, which is 
only 3.8% greater than the results obtained by the range method for ~ as small as possible. 
Repeated attempts were made earlier to calculate it with ~ ~ [D0, 0), D0 << i. However, 
these attempts were not successful, since there was no method of approximating the boundary- 
layer equations in the neighborhood of branch points and it was necessary to solve ill- 
conditioned systems of algebraic equations. The method developed here makes it possible 
to obtain an approximation, uniform with respect to ~ of the solution of the Marguerre-Vlasov 
equations for a sphere. Realization of the method on a computer showed that it also answers 
the question of the numerical integration of these equations in the region of small ~ in the 
axisymmetric formulation. 

We also determined the sequence of points of nonaxisymmetric branching {ps and the 
critical pressure Pc = mins {ps Here, ps is the eigenvalue of the boundary-value problem 

~a~(~ , ,  - o a ~ w ~  - f i ' u ~ w ~  - f i w ; , . - ' ,  ,. _ 1,  w ~  : w ' ,  ::_ o ,  
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A~( . . . )  ( . . . ) "  : ( . . . ) ' , . - ' - ~ , . - % . . ) ,  

which is obtained from (i.I) by expansion of the solution into a Fourier series and its 
linearization in the neighborhood of the axisymmetric solution (6, f). The indices of the 
exponents X~I of the basic functions are found from the condition 

{~-1,i 
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Calculations were performed for > = 8.5-10 -5 , 8 = 0.15, n = 6, p(r) = r 4 ~ , )v2 = ~3 : "'" 

1 ~ at which the functional G 6 reaches its minimum 16 = . It turned out that the value of 1 ~ 

is 0.300, while the corresponding critical pressure and wave-formation parameter takes values 
of 0.2339 and 20, respectively. 

3. Kinematic Relations. Derivation of the equations of the geometrically nonlinear 
theory of shells generally requires the satisfaction of two restrictions: the equations 
should be simple enough to permit numerical integration; all of the nonlinear terms deter- 
mining the stress-strain state must be kept in the strain tensor. 

In conformity with the method being examined here, the following plan is used in formu- 
lating the boundary-value problem. Kinematic relations are assigned on the basis of mechani- 
cal considerations. Then, in accord with [17], we derive the equilibrium and strain-compati- 
bility equations. 

Table 3 shows critical values of the pressure Pc on a spherical shell with a fixed edge. 
Also shown are the corresponding numbers of the harmonics in the Fourier series ~. The 
geometry of the middle surface was not identified with a plane [18]. 

It is evident that in the investigated range of ~ and e, the number of harmonics ~ does 
not exceed four. For ~ < 3, some of the expressions omitted from the fuller representation 
of the strain tensor are comparable to the quadratic terms in (1.3). If we replace these 
expressions, then two new terms appear in the kinetic relations 

v ] v 9 2 + 11- &vl -k w + lea,. + (I/2) 
--1 t p 

% - B vl~ + Bl~ u - -  k~v  + k~v  ~ + (1/2) o~, 
1 t 

( 3 . 1 )  

At ~ < 0.007, it can be suggested that the strains from (3.1) and (1.3) are close be- 
cause the shell is deformed mainly in a certain region of the edge under conditions of a 
singular perturbation. At the same time, the angles of rotation of the normal of a shell 
element in this case satisfy the inequalities I~NI >> knw, N = ~, 6- However, numerical 
analysis shows that within the framework of the given model, results obtained previously are 
also refined in this region if we consider the entire sequence {p~}, since branching of the 
solution at p~ >> Pc is possible for small s 
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